153 research outputs found

    Insignificant shadow detection for video segmentation

    Get PDF
    To prevent moving cast shadows from being misunderstood as part of moving objects in change detection based video segmentation, this paper proposes a novel approach to the cast shadow detection based on the edge and region information in multiple frames. First, an initial change detection mask containing moving objects and cast shadows is obtained. Then a Canny edge map is generated. After that, the shadow region is detected and removed through multiframe integration, edge matching, and region growing. Finally, a post processing procedure is used to eliminate noise and tune the boundaries of the objects. Our approach can be used for video segmentation in indoor environment. The experimental results demonstrate its good performance

    Low-Light Image Enhancement with Illumination-Aware Gamma Correction and Complete Image Modelling Network

    Full text link
    This paper presents a novel network structure with illumination-aware gamma correction and complete image modelling to solve the low-light image enhancement problem. Low-light environments usually lead to less informative large-scale dark areas, directly learning deep representations from low-light images is insensitive to recovering normal illumination. We propose to integrate the effectiveness of gamma correction with the strong modelling capacities of deep networks, which enables the correction factor gamma to be learned in a coarse to elaborate manner via adaptively perceiving the deviated illumination. Because exponential operation introduces high computational complexity, we propose to use Taylor Series to approximate gamma correction, accelerating the training and inference speed. Dark areas usually occupy large scales in low-light images, common local modelling structures, e.g., CNN, SwinIR, are thus insufficient to recover accurate illumination across whole low-light images. We propose a novel Transformer block to completely simulate the dependencies of all pixels across images via a local-to-global hierarchical attention mechanism, so that dark areas could be inferred by borrowing the information from far informative regions in a highly effective manner. Extensive experiments on several benchmark datasets demonstrate that our approach outperforms state-of-the-art methods.Comment: Accepted by ICCV 202

    Structure-Preserving Graph Representation Learning

    Full text link
    Though graph representation learning (GRL) has made significant progress, it is still a challenge to extract and embed the rich topological structure and feature information in an adequate way. Most existing methods focus on local structure and fail to fully incorporate the global topological structure. To this end, we propose a novel Structure-Preserving Graph Representation Learning (SPGRL) method, to fully capture the structure information of graphs. Specifically, to reduce the uncertainty and misinformation of the original graph, we construct a feature graph as a complementary view via k-Nearest Neighbor method. The feature graph can be used to contrast at node-level to capture the local relation. Besides, we retain the global topological structure information by maximizing the mutual information (MI) of the whole graph and feature embeddings, which is theoretically reduced to exchanging the feature embeddings of the feature and the original graphs to reconstruct themselves. Extensive experiments show that our method has quite superior performance on semi-supervised node classification task and excellent robustness under noise perturbation on graph structure or node features.Comment: Accepted by the IEEE International Conference on Data Mining (ICDM) 2022. arXiv admin note: text overlap with arXiv:2108.0482

    Self-Supervision Can Be a Good Few-Shot Learner

    Full text link
    Existing few-shot learning (FSL) methods rely on training with a large labeled dataset, which prevents them from leveraging abundant unlabeled data. From an information-theoretic perspective, we propose an effective unsupervised FSL method, learning representations with self-supervision. Following the InfoMax principle, our method learns comprehensive representations by capturing the intrinsic structure of the data. Specifically, we maximize the mutual information (MI) of instances and their representations with a low-bias MI estimator to perform self-supervised pre-training. Rather than supervised pre-training focusing on the discriminable features of the seen classes, our self-supervised model has less bias toward the seen classes, resulting in better generalization for unseen classes. We explain that supervised pre-training and self-supervised pre-training are actually maximizing different MI objectives. Extensive experiments are further conducted to analyze their FSL performance with various training settings. Surprisingly, the results show that self-supervised pre-training can outperform supervised pre-training under the appropriate conditions. Compared with state-of-the-art FSL methods, our approach achieves comparable performance on widely used FSL benchmarks without any labels of the base classes.Comment: ECCV 2022, code: https://github.com/bbbdylan/unisia
    corecore